On a conjecture of Danikas and Ruscheweyh

نویسندگان

  • A. Eremenko
  • W. K. Hayman
چکیده

We construct a holomorphic function f in the unit disc, whose derivative belongs to the Hardy class H1 , and the image of the unit circle under z 7→ ∫ z 1 f ′(ζ) dζ ζ is a simple curve, but f is not univalent.

برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

منابع مشابه

Remarks on a Multiplier Conjecture for Univalent Functions

In this paper we study some aspects of a conjecture on the convolution of univalent functions in the unit disk D , which was recently proposed by Grünberg, Ronning, and Ruscheweyh (Trans. Amer. Math. Soc. 322 (1990), 377-393) and is as follows: let 3 := {/ analytic in D: \f"(z)\ < Ref'(z), z £ D} and g, h £ S? (the class of normalized univalent functions in D) . Then Ke(f*g*h)(z)/z > 0 in D . W...

متن کامل

Disproof of a Conjecture on Univalent Functions

We disprove the Gruenberg-RRnning-Ruscheweyh conjecture, namely that Re d g z (z) > 0; jzj < 1; holds for g 2 S, the set of normalized univalent functions in the unit disk D , and d analytic with jd 0 (z)j Re d(z) in D , d(0) = 1. Here stands for the Hadamard product.

متن کامل

A note on Fouquet-Vanherpe’s question and Fulkerson conjecture

‎The excessive index of a bridgeless cubic graph $G$ is the least integer $k$‎, ‎such that $G$ can be covered by $k$ perfect matchings‎. ‎An equivalent form of Fulkerson conjecture (due to Berge) is that every bridgeless‎ ‎cubic graph has excessive index at most five‎. ‎Clearly‎, ‎Petersen graph is a cyclically 4-edge-connected snark with excessive index at least 5‎, ‎so Fouquet and Vanherpe as...

متن کامل

$L^p$-Conjecture on Hypergroups

In this paper, we study $L^p$-conjecture on locally compact hypergroups and by some technical proofs we give some sufficient and necessary conditions  for a weighted Lebesgue space  $L^p(K,w)$ to be a convolution Banach algebra, where $1<p<infty$, $K$ is a locally compact hypergroup and $w$ is a weight function on $K$.  Among the other things, we also show that if $K$ is a locally compact hyper...

متن کامل

On the oriented perfect path double cover conjecture

‎An  oriented perfect path double cover (OPPDC) of a‎ ‎graph $G$ is a collection of directed paths in the symmetric‎ ‎orientation $G_s$ of‎ ‎$G$ such that‎ ‎each arc‎ ‎of $G_s$ lies in exactly one of the paths and each‎ ‎vertex of $G$ appears just once as a beginning and just once as an‎ ‎end of a path‎. ‎Maxov{'a} and Ne{v{s}}et{v{r}}il (Discrete‎ ‎Math‎. ‎276 (2004) 287-294) conjectured that ...

متن کامل

ذخیره در منابع من


  با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید

برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

عنوان ژورنال:

دوره   شماره 

صفحات  -

تاریخ انتشار 1999